❓Чем отличается стандартный автоэнкодер от вариационного автоэнкодера (VAE), и в каких случаях стоит использовать VAE
Стандартный автоэнкодер (AE) и вариационный автоэнкодер (VAE) оба используют нейросети для сжатия данных (в латентное пространство) и последующего восстановления. Однако у них разный подход к латентному пространству и цели:
🟠Автоэнкодер (AE)
— Детерминированный: каждый вход x преобразуется в фиксированный вектор z — Цель — минимизировать ошибку реконструкции (например, MSE) — Применения: сжатие данных, устранение шума, понижение размерности — Ограничения: латентное пространство может быть неструктурированным, генерация новых данных — затруднена
🟠Вариационный автоэнкодер (VAE)
— Стохастический: вместо одного z модель выдает параметры распределения (обычно гауссианского), из которого семплируется z — Цель — максимизировать вариационную нижнюю границу (ELBO), включающую:ошибку реконструкции, KL-дивергенцию — Плюсы: латентное пространство структурировано, можно генерировать новые осмысленные примеры, просто семплируя z из N(0,1) — Применения: генерация изображений, data augmentation, работа с отсутствующими данными
🟠Когда использовать VAE вместо AE
— Когда нужна генерация новых данных (например, изображений) — Когда важно иметь регуляризированное латентное пространство — Когда модель должна обобщать, а не просто копировать вход — В задачах, где важна интерпретируемость или контроль над сгенерированными объектами
❓Чем отличается стандартный автоэнкодер от вариационного автоэнкодера (VAE), и в каких случаях стоит использовать VAE
Стандартный автоэнкодер (AE) и вариационный автоэнкодер (VAE) оба используют нейросети для сжатия данных (в латентное пространство) и последующего восстановления. Однако у них разный подход к латентному пространству и цели:
🟠Автоэнкодер (AE)
— Детерминированный: каждый вход x преобразуется в фиксированный вектор z — Цель — минимизировать ошибку реконструкции (например, MSE) — Применения: сжатие данных, устранение шума, понижение размерности — Ограничения: латентное пространство может быть неструктурированным, генерация новых данных — затруднена
🟠Вариационный автоэнкодер (VAE)
— Стохастический: вместо одного z модель выдает параметры распределения (обычно гауссианского), из которого семплируется z — Цель — максимизировать вариационную нижнюю границу (ELBO), включающую:ошибку реконструкции, KL-дивергенцию — Плюсы: латентное пространство структурировано, можно генерировать новые осмысленные примеры, просто семплируя z из N(0,1) — Применения: генерация изображений, data augmentation, работа с отсутствующими данными
🟠Когда использовать VAE вместо AE
— Когда нужна генерация новых данных (например, изображений) — Когда важно иметь регуляризированное латентное пространство — Когда модель должна обобщать, а не просто копировать вход — В задачах, где важна интерпретируемость или контроль над сгенерированными объектами
I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.
Telegram hopes to raise $1bn with a convertible bond private placement
The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.
Библиотека собеса по Data Science | вопросы с собеседований from cn